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Foreword 

 

This note was drafted by an internal working group of Établissement Public de Sécurité Ferroviaire 

(EPSF) and reflects solely the position of EPSF. 

 

It represents an initial collection of thoughts on the conditions under which inference models derived 

from machine learning algorithms could be authorised in safety-critical railway system applications.  

 

EPSF has no expertise in the field of machine learning. This note therefore lays out our current 

understanding of this subject, in the aim of fuelling debate and enabling informed dialogue between 

machine learning experts and railway safety experts. 
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1. Introduction 

 

he availability of increasing amounts of data has led to an increase in the use of machine 

learning algorithms, which have become increasingly effective. This development foreshadows 

new applications for these algorithms and consequently for the inference models thus derived. 

The rail sector envisages using inference models derived from machine learning algorithms in systems 

providing human operator assistance functions, for example in performing predictive maintenance, or in 

systems whose aim is to replace a function performed by a human operator, for example reading 

trackside signals to enable driverless train operation in autonomous or semi-autonomous mode. 

 

However, these inference models derived from machine learning algorithms raise new issues when it 

comes to demonstrating their safety level. Unlike the “classic” 

algorithms already authorised for use in railway and urban guided 

transport systems, the safety level of these inference models 

derived from machine learning algorithms cannot be demonstrated 

solely by guaranteeing that the algorithmic rules are complete and 

correctly coded. “Classic” algorithms, as used in ”expert systems”, 

are based on the verification of a set of rules developed by human 

beings. If these rules are complete, correctly coded, and correctly 

executed, the result will agree with expectations.  

 

In inference models derived from machine learning algorithms, 

correct application of the rules alone is not guaranteed to produce 

the expected result. In these machine learning based inference 

models, the rules incorporate parameters that may or may not produce the right result depending on 

their value. The value of each of these parameters is not set by the algorithm’s human designer of but 

determined automatically by the algorithm during the learning phase. Therefore for these inference 

models derived from machine learning algorithms, it is crucial to demonstrate that the learning phase 

has been sound, enabling the algorithm to determine the “right” value for each parameter. 

 

Figures 1 and 2 below illustrate the differences in the design and operation of ”classic” algorithms ( in 

green) compared with inference models derived from machine learning algorithms (in grey). 

 

Figure 1 - "Classic" algorithm and machine learning algorithm at the design stage 
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Figure 2 - "Classic" algorithm and machine learning algorithm at the operational stage 

 

Schematically speaking, therefore, an inference model derived from machine learning algorithms must 

learn to perform the task assigned to it “on its own” before it can be used operationally, insofar as the 

learning algorithm must determine the optimum value for each of the model's parameters. To do so, the 

algorithm relies on a training database tailored to the task it has to perform (for example, to learn to 

recognise railway signals, the database needs to contain images of railway signals). Using the data in 

this database, the algorithm will determine a value for each of the model’s parameters in order to 

determine the result being sought. The main types of machine learning include: 

- supervised learning, 

- unsupervised learning, 

- reinforcement learning. 

 

The learning phase must include a strategy covering all actions involved in calibrating all the model's 

parameters, which could mean using one or more of these main learning schemes. 

 

In the case of supervised learning, each entry in the training database is labelled with the expected 

result. The machine learning algorithm therefore applies its internal model to each entry in the training 

database, compares the result it obtains with the expected result, and if the results are different, modifies 

its internal parameters. A practical example of this type of learning is image classification. 

 

In the case of unsupervised learning, the learning algorithm will itself determine the characteristics 

corresponding to the different classes using the data in the training database. The idea is that the 

algorithm will discover the structures underlying this unlabelled data. This type of learning is therefore 

used to create groups of elements with common characteristics (clustering). 

 

In the case of reinforcement learning, the operating principle is to identify the actions to be taken in order 

to optimise a quantitative reward over time. It takes several actions for the algorithm to know whether it 

has achieved the objective (optimising the reward). To determine its internal parameters, it performs 

experiments, calculating the reward each time. A practical example of this type of learning has been 

teaching an algorithm to play Go. 

 

Building the training database for the first two types of learning, as well as formulating the reward, are 

therefore especially important if the inference model resulting from the machine learning algorithm is to 
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be effective. For both supervised and unsupervised learning, the training database must be properly 

representative of the problem. We need to take particular care not to introduce any biases when creating 

the database, as these could be reproduced in the inference model derived from the algorithm. 

 

This note therefore sets out to present EPSF's current thinking on the conditions under which inference 

models derived from machine learning algorithms could be used in railway applications. It first (section 

2) reviews the principles implemented in the railway world to guarantee an ongoing high safety level. It 

then (section 3) looks at selected primary use cases and the main issues when using these inference 

models derived from machine learning algorithms in railway applications. Third and last (sections 4 & 

5), it looks at the descriptive elements that would be expected in a railway application authorisation 

submission file and questions the requirements to be met in the case of an inference model derived from 

a supervised automatic learning algorithm used for a perception function. 

 

 

2. Context: authorisations, safety monitoring, and demonstration 
methods in the railway sector  

 

he fundamental principle of railway safety is non-regression, along with the ongoing 

preservation of the railway system’s overall safety level. This fundamental principle notably 

involves demonstrating that the introduction of a new subsystem or the modification of an 

existing system will not regress the overall safety level of the system. This principle of non-

regression of the safety level is enshrined in European regulations as well as in French decree no. 2019-

525 on interoperable railways and decree no. 2022-664 on local railways. This principle is sometimes 

referred to as Globalement au moins équivalent (globally at least equivalent) or by its initials “GAME”. 

At design level, in the scope of an explicit demonstration, non-regression is assessed for each hazard 

situation whose rate of occurrence must be less than a threshold value determined according to the 

severity of the accident the hazard situation could cause (occurrence/severity matrix). 

 

Furthermore, European Commission regulation (EU) No 402/2013 of 30th April, 2013 on the common 

safety method for risk evaluation and assessment sets harmonised design objectives for electrical, 

electronic, and programmable electronic technical systems in point 2.5.5 of its Annex, as follows: 

a) when failure could plausibly and directly give rise to a catastrophic accident, the associated risk need 

not be further reduced if it has been established that the probability of the function’s failure is 

extremely low (10-9/h) 

b) when failure could plausibly and directly give rise to a critical accident, the associated risk need not 

be further reduced if it has been established that the probability of the function’s failure is low (10-

7/h). 

 

However, point 2.5.11 of the same Annex states that “[...] if for a given hazard the applicant can 

demonstrate that the existing safety level in the Member State where the system is applied can be 

maintained with a less stringent design objective than the EU harmonised design objective, then this 

less stringent objective may be used instead of the harmonised design objective.” The non-regression 

objective is therefore the very minimum that must be achieved. 

 

T . 

https://www.securite-ferroviaire.fr/reglementation/decret-du-27-mai-2019-relatif-la-securite-et-linteroperabilite-du-systeme-ferroviaire-et-modifiant
https://www.securite-ferroviaire.fr/reglementation/decret-du-27-mai-2019-relatif-la-securite-et-linteroperabilite-du-systeme-ferroviaire-et-modifiant
https://www.securite-ferroviaire.fr/reglementation/decret-du-25-avril-2022-relatif-la-securite-de-lexploitation-de-services-locaux-de-transport
https://www.securite-ferroviaire.fr/reglementation/reglement-de-la-commission-du-30-avril-2013-msc-evaluation-et-appreciation-des-risques
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For interoperable and local rail systems, compliance with this principle of non-regression along with 

ongoing preservation of safety levels is founded on two pillars: the authorisation of fixed installations, 

vehicles, and rail operators, and the monitoring of and acting on feedback. 

 

2.1. Authorisations 

 

For authorisation purposes, risk analysis is the common denominator between authorisation applicants 

and the safety authorities. This analysis is what will enable the identification of risks and the safety 

constraints to deal with them. 

 

Risk is defined in Regulation (EU) No 402/2013 as “the frequency of occurrence of accidents and 

incidents causing harm (due to a hazard) and the degree of severity of that harm”, while risk analysis is 

defined as “the systematic use of all available information to identify hazards and estimate the risk”. 

 

The European regulatory framework for risk analysis is set out in Regulation No 402/2013 applying to 

the railway sector. It notably sets out three risk acceptance principles: 

- compliance with best practice rules, primarily regulatory specifications and standards, said 

compliance being acknowledged as a guarantee of acceptable safety levels 

- comparison with a similar system, used in the same conditions, insofar as said system has 

demonstrated through its operation that it guarantees an acceptable safety level 

- explicit risk assessment, which is used when the first two principles cannot be applied and is based 

on operational safety techniques This principle is especially useful in the case of disruptive 

innovations, for which no best practice has yet been defined and no similar systems exist. With more 

and more technologies being introduced, there is an increasing trend in the use of this principle. 

 

It should be noted that in addition to risk analysis, certain best practice rules are mandatory in order to 

guarantee the interoperability of the rail system. These are the technical specifications for interoperability 

and the national rules. Applicants for authorisation must therefore ensure that their project complies with 

interoperability and safety rules and that all the risks associated with the project are covered. To date, 

there are no requirements relating to machine learning in French interoperability specifications or 

national rules.  

 

2.2. Safety audits and monitoring 

 

Once the vehicles, fixed installations, and railway operators have been given authorisation, the second 

pillar of railway safety is feedback in the broad sense of the term, which includes both the analysis of 

safety occurrences and the audits carried out by the operator (railway undertaking (RU), infrastructure 

manager (IM)), or by EPSF, enabling ongoing verification of the effectiveness of risk mitigation measures 

and their effective application. 

 

To this particular end, French govt. order of 4th January, 2016 on the nomenclature used to classify rail 

safety events requires all rail operators to notify the EPSF of safety events occurring during the operation 

of their services, together with analysis points congruent with the seriousness of the events. This 

represents an information repository to which more than 20,000 events are added each year, classified 

according to a taxonomy that helps structure the collected data. 

 

https://www.securite-ferroviaire.fr/reglementation/reglement-de-la-commission-du-30-avril-2013-msc-evaluation-et-appreciation-des-risques
https://www.securite-ferroviaire.fr/reglementation/reglement-de-la-commission-du-30-avril-2013-msc-evaluation-et-appreciation-des-risques
https://www.securite-ferroviaire.fr/reglementation/arrete-relatif-la-nomenclature-de-classification-des-evenements-de-securite-ferroviaire
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The events identified are analysed in greater or lesser detail depending on their learning potential. This 

analysis can be carried out by various entities: railway operators, EPSF, BEA-TT.  

 

The systems and subsystems brought into service must therefore be capable of supporting these 

analysis. 

 

For a system comprising an inference model derived from a machine learning algorithm, the following 

section discusses the issues associated with the aforementioned two main pillars (pre-operational risk 

analysis and feedback during the operational phase) in various use cases. 

 

3. Different cases and consideration of their issues 

 

The use of inference models derived from machine learning algorithms for railway 

applications raises different issues depending on the use of the algorithm. In the 

remainder of this document, we will distinguish between the following two types of 

use:  

• That where the inference model derived from a machine learning algorithm 

("inference model” below) is directly involved in a safety function (i.e. there 

is no systematic human intervention that would enable a critical eye to be cast 

on the inference model’s output). In this case, a safety-related decision is made 

without human intervention either by an inference model derived from a 

machine learning algorithm or by a "classic" algorithm that has already been demonstrated to be safe 

but which relies on information from an inference model derived from a machine learning algorithm. 

For instance, the interpretation of information gleaned by a driverless train from trackside signalling 

falls into this category; 

 

• That where an inference model’s output provides information to a human operator who makes 

the decision. In this case, the inference model's output will not lead directly to a given safety action 

but the information it provides will guide the human operator's decision. Furthermore, if information 

is expected from the inference model but not provided, the human operator will not be able to take a 

critical look at it and react accordingly. A system that analyses rails to detect the formation of cracks 

and suggests preventive maintenance action would for example fall into this category. 

 

The issues associated with these two types of use are set out in sections 3.1 and 3.2. 

 

In addition, both cases above will have the common issue of implementing essential feedback once the 

system has been authorised and commissioned. This reproducibility and explicability issue is covered 

in more detail in section 3.3. 

 

3.1. Inference model derived from a machine learning algorithm directly involved in a 

safety action 

 
If the inference model is directly involved in a safety action, the system comprising this model must have 

a safety level compatible with the seriousness of the accident or incident it covers. This means that the 

inference model must play no part in elevating the occurrence frequency of the considered hazard 

For authorisation 

purposes, risk 

analysis is the 

common denominator 

between authorisation 

applicants and the 

safety authorities. 
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situation above a given level. However, the demonstration that this safety level has been achieved will 

relate to the system as a whole and not just the inference model.  

 

Broadly speaking, there are two main scenarios, each with its own challenges: 

1. the subsystem comprising the inference model provides safety data essential to the control program's 

decision, and it is the only subsystem to provide this data; 

2. the subsystem comprising the inference model analyses the data transmitted to it and makes the 

safety decision on its own. 

 

Note: In the remainder of this note, we will use the term “accuracy” to qualify the output data from the 

machine learning algorithm. Output data will be considered accurate if i) it corresponds to what is 

expected, and ii) it is transmitted within a timeframe compatible with its use. To take a non-railway 

example, the output of an image classification algorithm will be considered accurate if, when presented 

with an image of a cat as input, the algorithm indicates within the given timeframe that the most likely 

class for the image is “cat”. This term has been chosen to avoid any confusion with the terms usually 

used in operational safety. 

 

In the first case above, the data must be supplied with an adequate accuracy level. The subsystem 

comprising the inference model must therefore be analysed to assess the accuracy of the information 

transmitted. This accuracy level must be incorporated in the system’s safety demonstration (insofar as 

it furthers completion of the risk management process in accordance with Regulation (EU) No. 

402/2013) for the frequency of hazard situations to be guaranteed. This safety demonstration will also 

take into account the other data on which the subsystem making the decision is based (especially in the 

case of sensor fusion) 

 

In the second case above, the decision made by the subsystem comprising the inference model is a 

decision with a direct impact on safety, and this subsystem must therefore be analysed to assess the 

correctness of the decision made. As in the previous case, this accuracy level must be incorporated in 

the system’s safety demonstration for the frequency of hazard situations to be guaranteed. 
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https://www.securite-ferroviaire.fr/reglementation/reglement-de-la-commission-du-30-avril-2013-msc-evaluation-et-appreciation-des-risques
https://www.securite-ferroviaire.fr/reglementation/reglement-de-la-commission-du-30-avril-2013-msc-evaluation-et-appreciation-des-risques
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In both cases above, possible obsolescence of the training data must be taken into account. If the model 

parameters have been set with respect to a training database whose entries no longer match the data 

being input to the model, the training will no longer be valid. This could, for example, be the case when 

reading trackside signals if the signal gantries in the training database no longer match the gantries 

used on railway lines.  

 

IN SUMMARY: 

 

➔ For these two cases, the challenge is to determine the accuracy level of the subsystem 

comprising the inference model so that it can be integrated into the system's full safety 

demonstration. This implies being able to determine, in the usage scope of the system, a 

maximum probability for each occurrence of erroneous output data liable to lead to a 

hazard situation. This accuracy level will be guaranteed as long as the training database 

remains valid. 

 

Note: The remainder of this note will not go into further detail on the second of these cases, whose 

specific features require more in-depth study. Determining the safety authorisation conditions for the 

inference models used in the first scenario seems to us to be an interesting first step. 

 

 

 

3.2. Inference model derived from a machine learning algorithm assisting a human 

operator in decision making 

 
In the case whereby the inference model provides data that will be analysed by a human operator, the 

issue is twofold in that it concerns both the subsystem comprising the inference model and the human 

operator. For this scenario, this document assumes that independently of the subsystem comprising the 

inference model, the human operator has the means to make a critical judgement on the data 

transmitted. However, it is considered that the human operator is unable to make a critical judgement in 
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the event of a false negative, i.e., data that should have been transmitted to the human operator but 

was not. 

 

With regard to the subsystem comprising the inference model, for certain hazard situations, the objective 

could well be that the data it transmits can be understood and analysed critically by the human operator. 

At the very least, this would mean that the expected accuracy (not the guaranteed accuracy mentioned 

in section 3.1.) of the machine learning algorithm should be specified as well as its usage scope. 

Depending on the models used, the data transmitted may be accompanied by a reliability level or 

confidence interval. This also means that the human operator must be able to interpret the results 

provided (local explicability1).  

 

As far as the human operator is concerned, in the aforementioned hazard situation scenarios, the aim 

is to enable critical judgement of the data transmitted by the subsystem comprising the inference model. 

This involves training the operator to understand the results of the machine learning algorithm. This 

could include training on the main operating principles and limitations of the algorithm itself, as well as 

training on the tools that can help interpret the data generated by the algorithm. This also implies that 

the operator be provided with other means to confirm or reject an analysis produced by the machine 

learning algorithm. Finally, that means implementing measures to remind the human operator that the 

system, although efficient, is not infallible.  

 

IN SUMMARY: 

 

➔ In this case, for certain hazard situations, the challenge is for the human operator to be 

aware of the fallible nature of the subsystem comprising the inference model, and to be 

able to make a critical judgement on the data resulting from the inference model (because 

the algorithm's outputs are intelligible to him and because, in case of doubt, he has other 

tools at his disposal to confirm or refute the analysis of the inference model). 

 

3.3. Enabling feedback 

 

Feedback, in the broadest sense of the term, which includes both the analysis of safety events and the 

checks carried out by the operator (RU or IM) or by EPSF, plays an important role in maintaining and 

improving the safety level of the rail system. The various players in the rail system analyse events for 

the purpose of learning from them, for different purposes and for different events: RUs and IMs for 

events that concern them directly, EPSF for events reported to it and with an aggregating role at national 

level, in particular to share feedback for the benefit of all, and the Land Transport Accident Investigation 

Bureau (BEA-TT) for the most serious events. 

 

For this feedback to take place, these players need to be able to determine the causes of the various 

incidents and accidents. Each event must be analysed in depth to determine its root causes. The aim 

 
1 As regards intelligibility of output per Maël Pégny, Mohamed Issam Ibnouhsein. How transparent are machine 

learning algorithms? 2018. Hal-01791021 
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of identifying these root causes is to determine which safety barriers were ineffective and why, as well 

as any missing safety barriers. 

 

Reproducibility will be necessary in order to be able to check whether the subsystem comprising a 

machine learning algorithm has failed or not. This means that it must be possible to retrieve the state 

the subsystem was in at the time of the event, and that the system's input data must be available so that 

the event can be replayed. On this second point, input data can be recorded at different times: at the 

output of the sensors (raw data), during any pre-processing, just before processing by the inference 

model. The point in time when this data is recorded must be considered and justified, especially in terms 

of the processing carried out on the data upstream of the inference model. 

 

If the reproduction of the event concludes that the subsystem comprising the machine learning algorithm 

has failed, it will be necessary to be able to explain this failure, especially with regard to the inference 

model. This means that the people in charge of feedback (within the rail operators but also within the 

EPSF and the BEA-TT) will have to be able to understand the choice made by the inference model in 

the specific case of the event. The inference model is therefore expected to be at least locally explicable2 

. This local explicability for the people in charge of feedback may require specific tools. 

 

In the context of a system comprising a machine learning algorithm, this need to be able to provide 

feedback raises the question of reproducibility on the one hand and explicability on the other.  

 

IN SUMMARY: 

 

➔ Given the role of feedback in maintaining and improving the safety level of the railway 

system, especially through the analysis of precursor events, the reproducibility of safety 

events is an important issue. At this stage, reproducibility means that the learning process 

must be frozen when the inference model is brought into service, and that the algorithm's 

input data must be recorded over a sufficiently long period using robust “black box” type 

devices. 

➔ Moreover, in order to implement feedback, the machine learning algorithms must be locally 

explicable, i.e., a result given by the inference model must be able to be explained by the 

people in charge of feedback (at the railway operator but also at EPSF and BEA-TT), which 

may require specific knowledge and tools. 

 

This section will be limited to the cases of an inference model directly involved in a safety action present 

in the perception subsystem (cf. section 3.1.) and to that of an inference model assisting a human 

operator (cf. section 3.2.). As already stated, the case of an inference model present in a decision 

subsystem will not be gone into in detail in this note.  

 

 
2 This concept is developed in particular in Maël Pégny, Mohamed Issam Ibnouhsein. How transparent are machine 

learning algorithms? 2018. Hal-01791021 
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4. Expected description 

 

4.1. The system (vehicles or fixed installations) 

 

The authorisation logic applying in the railway sector, which can concern either vehicles or fixed 

installations, was explained at the beginning of this note. There will therefore be no authorisation 

specifically for equipment comprising a learning algorithm. Authorisation will cover the entire “vehicle” 

system or the entire “fixed installation” system. It should be noted for the purposes of this note that the 

term “system” refers to the full scope of the authorisation (vehicle or fixed installation). For the record, 

authorisation also takes into account the safe integration of this system into the rail system per the 

meaning in Annex I of Directive (EU) 2016/797 of the European Parliament and of the Council of 11th 

May, 2016 on the interoperability of the rail system within the European Union. 

 

The description of this "vehicle" or "fixed installation" system is therefore a basic necessity. It should 

give an overview of how the system works and describe how the subsystem comprising the inference 

model fits into the system and how it contributes to execution of the system's functions. It must also 

stipulate the conditions for operating and maintaining the system, with special attention to organisational 

and human factors. 

 

In the scope of the system description, the subsystem comprising the inference model can be 

considered a “black box”. The aim of this system description with respect to the subsystem comprising 

the inference model is to identify the following: 

- the input data for the subsystem comprising the inference model 

- the output data for the subsystem comprising the inference model 

- the way this output data is used by the system in question and, where applicable, by the human 

operator in fulfilling the expected functions. 

 

The diagram below shows the elements concerned. 
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To illustrate this, we shall consider the simplified case of a subsystem used to detect and recognise any 

obstacles that might be located on the track within the running gauge. In this example, the input data to 

the obstacle detection subsystem comprising the inference model is in the form of images from a camera 

filming in front of the train. For its output, the subsystem transmits its presumption of what category is in 

front of the train: no obstacle or presence of a human, animal, tree, rock, or smoke. Based on the 

likelihood of this information, the train will react as follows (assuming all other parameters remain 

unchanged): 

- no obstacle: no change to the traction setting 

- human, animal, tree, rock: initiate emergency braking 

- smoke (due to a fire close to the tracks which could spread to the train if stopped alongside): traction 

set to reach the maximum permitted speed. 

 

In this example, we can see that it’s not the accuracy level of the entire output data from the subsystem 

comprising the inference model that matters to the safety demonstration, but the specific accuracy of its 

ability to detect there is no obstacle and the accuracy of its ability to detect that the obstacle in front of 

it is smoke. These accuracy levels will be incorporated into the safety demonstration to ensure that the 

risk of collision and the risk of fire are covered. 

 

Furthermore, this operational description of the system goes hand in hand with its scope of use in 

nominal and degraded modes, which will stipulate the usage limits of the system and therefore of the 

subsystem comprising the inference model. This scope of use will notably indicate the maximum 

operating speed, the limiting daylight conditions (night/heavy sunlight), the limiting weather conditions 

(snow, fog, etc.) and any constraints exported to the operator and/or maintainer. The safety 

demonstration must guarantee that the system is not used outside its scope of use. 

 

In the case of a machine learning algorithm assisting a human operator, the system description should 

also include the interaction between the system and the human operator. This description should enable 

the details provided to the human operator to be comprehensively mapped and qualified, so that the 

operator can understand and take a critical look at the data transmitted by the system, coupled with a 

“confidence” level. It must also enable an understanding of the conditions under which the human 

operator will be required to interact with the system in nominal and degraded operating situations. 

Organisational and human factors in particular must be taken into account. 

 

4.2. Subsystem comprising the inference model 

 
Once the system has been described and the role of the subsystem comprising the inference model 

defined, the factors used to determine the accuracy level of the output data from this subsystem must 

be justified and detailed.  

 

At this stage, the following points are identified as requiring special attention, given their impact on the 

accuracy level of the output data of the subsystem comprising the inference model: 

- the inference model’s architecture 

- the learning phase 

- the inference model validation phase  

- the hardware configuration used for the validation and operational phase. 
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The inference model’s architecture must be described, along with the reasons that led to its choice. The 

purpose of this description is twofold: on the one hand, to provide arguments explaining how the chosen 

architecture is suited to the function that the inference model must fulfil, and on the other, to provide the 

traceability required for feedback purposes. 

 

The way in which learning is conducted will be described. The purpose of this description is twofold: on 

the one hand, to indicate what has been done to achieve optimum learning for the function in question 

(for example, the minimum of the cost function used), and on the other, to demonstrate that the learning 

data is representative with respect to the intended scope of use. 

 

The process for validating the inference model will be described. Justification must be provided for the 

following three points in particular: 

- how does the algorithm design process contribute to its validation? 

- how has the database used for validation been produced, especially in relation to the training 

database, and is it guaranteed representative of all the real-life situations encountered? 

- what metric is being used for the assessment and for what reasons? 

 

Management of the learning expiry period must be addressed. A description is required of the measures 

to be implemented to ensure the learning is still valid in relation to the real situations encountered. 

 

The hardware configuration that will be used to run the subsystem comprising the inference model, 

along with its conditions of use, will be described for the purpose of demonstrating that the calculations 

performed are those expected, that the calculation time is compatible with the subsystem’s use, and 

that calculation errors are controlled. It should be noted that the hardware configuration when using the 

machine learning subsystem may differ from that in the learning phase. It must however be the same 

configuration as used for the validation tests. 

 

In relation to all the above, there shall be a description of the project's internal double checking process 

and the process of double checking by an independent third party, in accordance with Regulation (EU) 

No 402/2013. 

 

 

5. Requirements and issues to be addressed 

 

In view of the points raised in this note, systems incorporating automatic learning algorithms cannot be 

authorised unless certain requirements are met. Some requirements already seem achievable, while 

others probably require further research and development. 

Special attention shall be paid to ensuring the training database in representative. It must relate to 

the scope of use as specified in the system description.  

 

At this stage, the requirements identified and the actions to be taken in relation to some of these 

requirements are described below. These requirements should enable the following three general 

necessities to be met: 

https://www.securite-ferroviaire.fr/reglementation/reglement-de-la-commission-du-30-avril-2013-msc-evaluation-et-appreciation-des-risques
https://www.securite-ferroviaire.fr/reglementation/reglement-de-la-commission-du-30-avril-2013-msc-evaluation-et-appreciation-des-risques


SYS - DOCT - 001 - V1 

Artificial intelligence 

Conditions for authorising the use of systems incorporating machine learning algorithms 16/22 

1. the subsystem comprising the inference model must be certifiable so that it can be incorporated in 

the system's safety demonstration (this includes the operation and maintenance phases to ensure 

the ongoing safety level is maintained) 

2. the subsystem comprising the inference model must be auditable 

3. once commissioned, the action of the subsystem comprising the inference model must be 

reproducible. 

 

5.1. The subsystem comprising the inference model must be certifiable so that it can 

be incorporated in the system's safety demonstration 

 

Requirement R1: It must be possible to determine and demonstrate an accuracy level for 

each output of a subsystem comprising an inference model in a given scope of use. 

 

 

 

To meet this requirement, it seems clear we must distinguish between two main sources of error: 

- the first source of error is specific to machine learning algorithms and is discussed below; 

- the second source of error concerns calculation errors due to a hardware error and is 

common to all software. Hardware errors are not discussed in detail below but are the 

subject of questions to be addressed. 

 

The diagram below shows a breakdown of errors specific to inference models derived from machine 

learning algorithms. This breakdown is theoretical as some curves are not known. It deals with the 

example of an algorithm for detecting a clear-track railway signal. 
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Real space in the scope of use 

 

 

An erroneous output result from the subsystem comprising the inference model could therefore be due 

to one of the following: 

- the choice of an inference model that does not completely hug the curve forming the boundary 

between all the “path clear” signals and all those that are not “path clear”. This is represented on the 

diagram as the difference between the green and yellow curves; 

- a training database that is not representative of all the situations that may be encountered (the real 

space of situations), which means the subsystem cannot be accurate in certain situations; 

- the implementation of a learning phase that does not allow the best possible curve to be attained, 

given the structure of the inference model chosen. This especially applies to deep neural networks, 

for which the cost function is not convex and therefore only a local minimum could be reached during 

training. 

 

These last two points account for the difference between the yellow curve and the red curve. 

 

In view of these factors, this first requirement gives rise to the following questions: 

 

Question Q1.1: How can we demonstrate that the space represented by the training database is 

representative of the real space in which the subsystem will operate?  

 

Question Q1.2: How can the inference model be designed in such a way as to demonstrate that it is 

suited to the desired function? 

 

Real boundary (unknown) 

Best possible boundary in light of the 

algorithm 

Actual border taking account of learning 

Space represented by the training database 

Image of path clear signal (learning) 

Image of other signals (learning) 
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Question Q1.3: How can learning be carried out in such a way as to demonstrate that optimum learning 

has been attained? Is this demonstration necessary for certification? 

 

Question Q1.4: How can the accuracy of the subsystem comprising the inference model be validated? 

In particular, how many tests should be carried out to ensure statistical significance with respect to the 

safety objective to be achieved (generalised error compared with the error actually observed during the 

tests)? 

 

Question Q1.5: Do programming languages have an impact on the safety level of the inference model 

derived from the machine learning algorithm? If so, are the languages currently in use sufficiently 

robust? 

 

Question Q1.6: Should the hardware configuration used for testing and operating the subsystem be 

secure (e.g., with a 2 out of 3 architecture)? 

 

Question Q1.7: Can the relevance of the use of the subsystem be monitored during its operation? 

 

*** 
 

 

Requirement R2: To ensure that this accuracy level is maintained over time for each 

output of a subsystem comprising an artificial intelligence algorithm, a monitoring process 

must be implemented. 

 

 

 

Over time, the accuracy of the inference model could decrease, either because the quality of the 

transmitted data changes (ageing sensors, new sensors with different sensitivity, changes in the 

sensor's “technical” environment, e.g., if the colour of the windscreen in front of a camera) changes, or 

because the '”real space” changes beyond the algorithm’s generalisation capabilities (for example, the 

introduction of a new railway signal light gantry). 

 

Considering these points, this second requirement raises the following questions: 

 

Question Q2.1: How should the technical environment upstream of the inference model be monitored? 

Is the principle used in qualifying a change to the rail system both necessary and sufficient?  

 

Question Q2.2: Is it possible to continually monitor or manage changes in the “real space”?  

 

Question Q2.3: Is there need for a periodic review of the certification of the subsystem comprising the 

inference model? 

 

5.2. Once commissioned, the action of the subsystem comprising the inference model 

must be reproducible 
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Requirements R3: In the event of an incident or accident, it must be possible to reproduce 

the action of the subsystem comprising the inference model. 

 

 

 

The main objective of this requirement is to be able to reproduce what the subsystem comprising the 

inference model did so that we can determine whether it was responsible for the occurrence of a hazard 

situation, which means determining whether or not the data from this subsystem was adequate. If the 

output data was indeed inadequate, the subsystem’s auditability will help us understand the cause of 

the error. 

 

To be able to reproduce an action by the subsystem comprising the inference model, following an event, 

it seems that two conditions must be met:  

i) to be able to use the subsystem in the same state as it was in at the time of the event 

ii) to know the input data for the subsystem at the time of the event. 

 

Considering these points, this second requirement raises the following questions: 

 

Question Q3.1: Is it necessary and sufficient to freeze the learning process before commissioning in 

order to meet this requirement? 

 

Question Q3.2: What relevant data should be recorded upstream of processing by the inference model 

in order to be able to reproduce an event? (input data for the inference model, raw data from sensors, 

partly pre-processed data, etc.) 

 

Question Q3.3: As with the JRU (Juridical Recording Unit), how can these relevant data/decisions be 

securely stored? 

 

5.3. The subsystem comprising the inference model must be auditable 

 

Requirement R4: Human operators must have the necessary skills and tools to take a 

critical look at the data transmitted by the subsystem comprising the inference model. 

This requirement must be applied to the analysis of an event as well as to a subsystem 

that assists a human operator’s decision making. 

 

 

 

In order to comply with this requirement, it appears that three distinct cases must be considered: 

- the case whereby an event is being analysed by a specialist feedback team or a specialist 

maintenance team. The timeframe for this analysis is not immediate and certain aspects of the 

analysis may require further investigation, which could be outsourced. This case also covers 

analyses conducted as part of the operator's ongoing monitoring or EPSF’s audits 

- the case whereby an accident or incident is analysed immediately in order to determine whether the 

subsystem comprising the inference model is involved and could pose a serious imminent risk, which 

would mean suspending the use of all identical subsystems 

- the case whereby a subsystem is assisting a human operator during operation of the rail system.  
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In the first case, the team assigned to understanding why the subsystem comprising the inference model 

has produced a given result could have several skills among its members, including one in machine 

learning algorithms. It will also have the time to call on external skills and tools. In the second case, the 

team in charge of the analysis must be able to determine in a short space of time whether or not the 

algorithm is to blame, or at the very least, whether there is any suspicion of its involvement. In the third 

case, each operator using the subsystem comprising an inference model must be able to make critical 

judgements on the output data transmitted by the subsystem in a short space of time. 

 

In view of the above factors, in each of these three cases, this third requirement gives rise to the following 

questions: 

 

Question Q4.1: What training should be given to the analysis teams and what training to the operators 

to enable them to interpret in any given case (local explicability) the output of the subsystem comprising 

the inference model, and therefore make a critical judgement on this output?  

 

Question Q4.2: Is it conceivable that the subsystem comprising the inference model could autonomously 

and reliably assess whether it is being used in its nominal operating conditions (for example, with 

sufficient daylight or with an excessive level of fog)? 

 

Question Q4.3: Are reliable tools that are independent of the subsystem comprising the inference model 

necessary to enable this critical judgement to be made? If so, what useful tools are available for each 

case? 
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